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A direct variational method is used to show that a fluid flow with a continuous 
velocity field exists in a bounded region, which is potential in a part of the re- 
gion and has a specified vorticity in the remaining part. The basic difficulty is 
to prove the smoothness of a solution which would satisfy the Euler equation with 
discontinuous coefficients. 

In a number of cases when the motion of the fluid is studied at large Reynoldsnumbers, 

problems arise of matching smoothly a potential and a vertical flow (see e.g. [l - 31). 

In the plane case the problems are formulated as follows : to determine in a specified re- 
gion Q a continuously differentiable stream function -+ and a curve y so that $ = 0 

on y and A$ = 0 on the side of y on which ‘II, > 0, while on the side where ‘II, < 0, 
the Laplacian A+ assumes a prescribed value of the vorticity o (2). The boundary value 
conditions for I# are determined from the hydrodynamic considerations, and the region 

p is not necessarily bounded. Other similar formulations of the problem are also possi- 

ble. 

Problems of matching the flows were studied numerically and analytically by many 
authors using the above formulation. Certain properties of the line y have been estab- 
lished in [S- 81 and the existence of a solution was proved in [9] for the case when the 
region Q is bounded. All the above papers used the method of reducing the problem to 

a certain nonlinear integral equation and solving the latter numerically. In [9] it was 
mentioned that the problem of matching allows a variational formulation. Below weuse 
a direct variational method to solve that problem in bounded regions. The proof does not 

depend on the dimensionality n of the space, and is therefore given in its most general 
form. Naturally, the hydrodynamic interpretation is possible only when n = 2. Theso- 
lution of the problem is represented by an extremum of a certain discontinuous function- 

al 1 which is approached, as e -+ 0 , by a family of smooth functionals I,; in this way 
the smoothness of the solution is proved. An interesting problem on the number of so- 
lutions remains open. The standard notation is used throughout this paper (see [lo], Ch. 

Sect. 1). 

Let 62 c E,, TZ > 2 be a region with a sufficiently boundary (e. g. a piecewisesmooth 

boundary of class C” with nonzero angles), o and E be some positive numbers, and 

cp E C” (52). We define in W,l (52) the functional 

and consider the variational problem P (E) : to minimize I, ($) in the class of allfunc- 
tions II, E cp + W,“r (Q). 

Theorem 1. The problem P (F) has at least one solution ; for any solution -+,, of 
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this problem the following estimate uniform in E E (0, 11 holds : 

m=k 1% I f C (Q2, r~, a)) (1) 

Proof. First we confirm the validity of the standard lemmas on which the direct 

method of variational computation is based. 
Lemma 1. The values of the functional Z on the set cp + Wa”l (Q) are uniformly 

bounded from below. 

Lemma 2. If I, (*) < C’, $ E y f Wpol (Q), then 

119 llW,+2) < C (8, @, rp, C’) 

The anove lemmas can be proved using the Schwartz and poincare inequalities. 
Lemma 3. The functional I, is semicontinuous from below relative to the weak 

convergence in w,r (Q) on the set cp + Wzol (a). 

Assuming that 
Z, = Z,r + Z,z - Zrt 

* Ze, = 
\ 

] v* 12 dz, 
h 

I,, = Q \ 9 dx, 
22 

I,, = 0 1 y-E + lpdx 
n 

we see that the semicontinuity of the functional Z,, from below is certain, the function- 

al Z,, is linear and Z*s is continuous relative to the weak convergence on the set rp + 

Wzbl (SZ). Indeed,if $k -+ 9 is weak in g, -t- Wzol (id), then the Rellich theorem guaran- 
tees the strong convergence Qk --f * in L, (Q) and evidently also in L1 (a) . Itremains 
to take into account the inequality 

I++$i”-~~+<\+~-~I 

and the proof of existence of at least one solution of the problem P (8) can now be car- 

ried out using the standard methods (see e, g. [llf ). 

Next we prove that every solution & of the problem P (E) is bounded, It is evident, 
that vrsi supo 9 6 supan cp. Indeed, if it were not so, then for every k > SUpa& for 

the section $ck) (x) = min {Q (4, kJ E g, i- Waol (61) we would haveZE ($(“)) <Z, (4)). 
The proof that the solution is bounded from below by a constant independent of E , is 

somewhat more involved, and here we can use an argument analogous to that given at 
the end of Sect. 2 in [12]. 

Corollary [ 131. Any solution & of the variational problem P (E) is a classical 
solution of the Euler equation for the functional I, 

A$ = F (0, ‘4,. s), F (0, $, s) = ‘12 W (1 - * / I/W), 9 Ian = 9 (2) 

In particular, the solution $+ is analytic at all internal points of the region 8. 
Now we turn our attention to the basic variational problem P: to minimize, on the 

set of functions $ E cp + Wzal (61) , the functional 

Z(*)==S (IVlC,12+2wmin(~(~),0))~~ 
o 

Theorem 2. The problem P has at least one solution 21 E C1’a (31, a = c.z (0) fz 
(0, 11; the function 9 is analytic everywhere in sz \ (z E Q : t@) = 0) and A$ (z) = 0, 

when 9 (r) > 0 and A$ (s) = o, when 9 (2) < 0. 
Proof. Any solution & of the problem P (E) will satisfy Eq. (2) with the right-hand 

side admitting the estimate 1 I; (0, $, E) 1 < o independent of s . Therefore, using 
the estimate (1) and Theorem (6.5) of ([?lO],ch.4), we can find a number a E (0,ll 
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independent of E and such that 

n % !&i+o(& \< c (Q‘ cp, 0) 

But in this case the function *J;‘R = +& will converge in the norm ci+“i* (5) for some 

sequence rk --, 0 to some function 9 E {g’ + u’,ol (q} fl fFa (3). We can nowprove, 
as in [12], that $ is a solution of the problem P. 

Setting now b> 2, , let us consider the set 62, = {z E Q : 1 J! (z) 1 > 6). From some 

value of k onwards, 1 t& (2) \ > h I 2, provided that z E bts. In particular, the follow- 
ing estimate holds on it, : 

I4 F (0, $p El Ilca@,,< c (6, Q, f&(P) 

Applying the inner Schauder estimates to any subregion Qs’ C C Q,, we find, that the 

norms l19klt6s+a(~sis’~. are uniformly bounded. 

Choosing now a suitably corresponding subsequence, we can assume that 11 gk - +I/--+ 
0 in the norm ~*+~‘a (zs*) and, that $ E C*+” (5;) . In particular,for any 2 E Q, 

we have 

Since we can exhaust all 51 , {z ez Q : ‘tl, (2) = 0), with sets Q,’ , Theorem 2 is proved. 

Notes 1”. At sufficiently large o theset fz E Q : J, (2) < u) is nonempty for any 
solution 9 of the problem P. Otherwise for any o > 0 the solution II, would be a har- 
monic function assuming prescribed values at the boundary 8Q ,i.e. it would be inde- 

pendent of o. But in this case for the arbitrary iimction QO E C2 (II) fl {(P-!- IPa” (Q)), 

such that Jfa<O somewhere in 52, we can find w so large that the inequality I (qO) < 

I (tl;) will hold. 

2”. Theorems 1 and 2 can be directly generalized to functionals with sufficiently 

smooth o _= ti (2). 

The author thanks B. V. Shabat for assessing the results of this paper. 
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